Table 2. Distances (\AA) and angles $\left({ }^{\circ}\right)$ in the MoO_{6} and PO_{4} polyhedra and main $\mathrm{Tl}-\mathrm{O}$ distances

The Mo- $\mathrm{O}^{\mathbf{i}}$ or $\mathrm{P}-\mathrm{O}^{i}$ distances are on the diagonal, above it are the $\mathrm{O}^{i}-\mathrm{O}^{i}$ distances and under it are the $\mathrm{O}^{i}-\mathrm{Mo}-\mathrm{O}^{j}$ angles.

$\mathrm{Mo}(1)$	$\mathrm{O}(1)$	O(2)	$O(3)$	$\mathrm{O}(4)$	O(5)	O (6)
$\mathrm{O}(1)$	$1 \cdot 66$ (1)	$2 \cdot 68$ (2)	2.74 (2)	2.83 (2)	$2 \cdot 74$ (2)	$3 \cdot 81$ (2)
$\mathrm{O}(2)$	92.9 (7)	2.01 (2)	2.41 (2)	2.77 (2)	2.92 (2)	2.80 (2)
$\mathrm{O}(3)$	96.3 (7)	168.8 (6)	2.00 (1)	2.78 (1)	2.92 (2)	2.86 (2)
O(4)	98.5 (6)	85.8 (6)	86.5 (5)	2.06 (1)	4.06 (2)	2.83 (2)
$\mathrm{O}(5)$	95-2 (6)	92.7 (6)	92.9 (6)	$166 \cdot 2$ (5)	2.02 (1)	2.74 (2)
$\mathrm{O}(6)$	$175 \cdot 8$ (6)	84.3 (6)	86.9 (6)	84.4 (6)	81.9 (6)	2.15 (2)
Mo(2)	$\mathrm{O}(7)$	$\mathrm{O}(8)$	$\mathrm{O}(9)$	$\mathrm{O}(10)$	O(11)	$\mathrm{O}(12)$
$\mathrm{O}(7)$	1.66 (1)	2.73 (2)	2.81 (2)	2.82 (2)	2.70 (2)	3.83 (2)
$\mathrm{O}(8)$	93.9 (7)	2.05 (2)	$2 \cdot 46$ (2)	2.84 (2)	2.87 (2)	2.74 (2)
$\mathrm{O}(9)$	99.5 (7)	166.6 (7)	2.00 (2)	2.78 (2)	2.84 (2)	2.85 (2)
$\mathrm{O}(10)$	1008 (7)	89.2 (6)	88.5 (6)	1.99 (1)	3.99 (2)	2.73 (2)
$\mathrm{O}(11)$	93.4 (6)	89.5 (6)	89.5 (6)	$165 \cdot 8$ (6)	2.03 (1)	2.82 (2)
$\mathrm{O}(12)$	174.0 (7)	80.7 (6)	86.0 (6)	81.7 (6)	84.1 (5)	$2 \cdot 18$ (1)
$\mathrm{P}(1)$	O(6)	$\mathrm{O}\left(8^{\text {ii }}\right.$)	O (9ii)	O(13)		
$\mathrm{O}\left(6^{\text {i }}\right.$)	1.52 (2)	2.57 (2)	$2 \cdot 55$ (2)	2.52 (2)		
$\mathrm{O}\left(8^{\text {ii) }}\right.$)	115.9 (9)	1.52 (2)	2.46 (2)	2.53 (2)		
$\mathrm{O}\left(9^{\text {iii) }}\right.$)	113.3 (9)	107.1 (9)	1.54 (2)	2.48 (2)		
O(13)	107.5 (8)	108.1 (9)	104.2 (8)	1.61 (1)		
P(2)	$\mathrm{O}\left(4^{\text {i }}\right.$)	$\mathrm{O}(11)$	$\mathrm{O}\left(12^{\text {ii) }}\right.$	O(13)		
$\mathrm{O}\left(6^{\text {in }}\right.$)	1.52 (1)	2.47 (2)	2.48 (2)	2.45 (2)		
$\mathrm{O}(11)$	109.9 (8)	1.50 (1)	2.53 (2)	2.48 (2)		
- $\mathrm{O}\left(12{ }^{\text {i }}\right.$)	111.6 (8)	116.3 (9)	1.48 (2)	2.51 (2)		
O(13)	$103 \cdot 5$ (8)	106.2 (8)	108.5 (8)	1.60 (2)		
$\mathrm{P}(3)$	$O\left(2^{\prime \prime}\right)$	$\mathrm{O}\left(3^{\text {in }}\right.$	O(5)	$\mathrm{O}\left(10^{\text {i }}\right.$)		
$\mathrm{O}\left(2^{\prime}\right)$	1.54 (2)	2.41 (2)	2.54 (2)	$2 \cdot 48$ (2)		
$\mathrm{O}\left(3^{\text {iv }}\right.$)	$103 \cdot 8$ (8)	1.51 (2)	2.53 (2)	2.44 (2)		
O(5)	111.9 (9)	113.3 (8)	1.52 (2)	2.49 (2)		
$\mathrm{O}\left(10^{\text {ri }}\right.$)	108.9 (9)	107.9 (9)	$110 \cdot 7$ (8)	1.50 (2)		
$\mathrm{T}(1)$ -	$\mathrm{O}\left(2^{\text {rii }}\right)$	$3 \cdot 07$ (2)		$\mathrm{Tl}(1)-\mathrm{O}\left(13^{\text {iv }}\right.$)		
T1(1)-O	$\mathrm{O}(2)$	$3 \cdot 00$ (2)		$\mathrm{Tl}(2)-\mathrm{O}\left(\mathrm{l}^{\text {iv }}\right.$)		
T (1)-	$\mathrm{O}\left(3^{\text {riii) }}\right.$)	$3 \cdot 49$ (2)		$\mathrm{Tl}(2)-\mathrm{O}(2)$		
T1(1)-0	$\mathrm{O}\left(4^{\text {rii }}\right)$	$2 \cdot 98$ (2)		$\mathrm{Tl}(2)-\mathrm{O}\left(3^{\text {Viii }}\right)$		
TI(1)-	$\mathrm{O}(4)$	2.99 (2)		$\mathrm{Tl}(2)-\mathrm{O}(7)$		
$\mathrm{Tl}(1)$	$\mathrm{O}\left(6^{\text {rii }}\right.$)	3.05 (2)		$\mathrm{Tl}(2)-\mathrm{O}\left(8^{\text {V }}\right.$)		
71(1)-	$\mathrm{O}\left(10^{\text {jx }}\right.$)	$3 \cdot 20$ (2)		$\mathrm{Tl}(2)-\mathrm{O}\left(\mathrm{g}^{\text {V }}\right.$)		
T1(1)-0	$\mathrm{O}\left(10^{*}\right)$	3.03 (2)		$\mathrm{T}(2)-\mathrm{O}\left(11^{\text {N }}\right.$)		

Symmetry code: (i) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $1-x, 1-y,-z$; (iii) $1-x, 1-y$, $1-z$; (iv) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (v) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (vi) $x-1, y, z$; (vii) $-x,-y$, $-z$; (viii) $x, y, z-1$; (ix) $x-1, \frac{1}{2}-y, z-\frac{1}{2}$; (x) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.
pound exhibits a more symmetrical space group ($P 2_{1} / c$) identical to that of potassium, whereas the rubidium and caesium phases are characterized by
the $P 2_{1}$ group. This different behaviour of thallium compared to rubidium in spite of the similar size of these cations may be due to the presence of the $6 s^{2}$ lone pair of Tl^{+}. Moreover, it is worth pointing out that one of the thallium ions [$\mathrm{Tl}(1)$] is significantly displaced from the positions observed for potassium.

The $\mathrm{Mo}-\mathrm{O}$ interatomic distances in the MoO_{6} octahedra are characteristic of $\mathrm{Mo}^{\mathbf{v}}$ with one abnormally short Mo-O bond, four intermediate Mo-O distances and a very long one (Table 2). The $\mathrm{P}(3)$ - O distances are close to those observed for a monophosphate, i.e. four almost equal distances. The $\mathrm{P}(1)-\mathrm{O}$ and $\mathrm{P}(2)-\mathrm{O}$ distances correspond to those observed in diphosphate groups, i.e. one long distance and three medium ones (Table 2). $\mathrm{Tl}(1)$ is surrounded by ten O atoms with $\mathrm{Tl}-\mathrm{O}$ distances ranging from 2.98 (2) to 3.57 (2) \AA and $\mathrm{Tl}(2)$ is linked to seven O atoms with $2 \cdot 84(1)<\mathrm{Tl}-\mathrm{O}<$ 3.55 (2) \AA (Table 2).

References

B. A. Frenz \& Associates, Inc. (1982). SDP Structure Determination Package. College Station, Texas, USA.
Chen, J. J., Li, K. M. \& Wang, S. L. (1988). J. Solid State Chem. 76, 204-209.
Costentin, G., Borel, M. M., Grandin, A., Leclaire, A. \& Raveau, B. (1990). J. Solid State Chem. 89, 31-38.
Haushalter, R. C. \& Lai, F. W. (1989). J. Solid State Chem. 83, 202-206.
Leclaire, A., Borel, M. M., Grandin, A. \& Raveau, B. (1989). Z. Kristallogr. 188, 77-83.

Leclatre, A., Borel, M. M., Grandin, A. \& Raveau, B. (1990a). Acta Cryst. C46, 2009-2011.
leclaire, A., Borel, M. M., Grandin, A. \& Raveau, B. (1990b). J. Solid State Chem. 89, 10-15.

Leclaire, A., Monier, J. C. \& Raveau, B. (1983). J. Solid State Chem. 48, 147-153.
LiI, K. M. \& Haushalter, R. C. (1987). J. Solid State Chem. 69, 320-328.
Li, K. M., Johnston, D. C., Goshorn, D. P. \& Haushalter, R. C. (1987). J. Solid State Chem. 71, 131-138.

Riou, D. \& Goreaud, M. (1989). J. Solid State Chem. 79, 99-106.

Acta Cryst. (1991). C47, 1138-1141

KVPO_{5}, an Intersecting Tunnel Structure Closely Related to the Hexagonal Tungsten Bronze

By L. Benhamada, A. Grandin, M. M. Borel, A. Leclaire* and B. Raveau
Laboratoire de Cristallographie et Sciences des Matériaux, CRISMAT-ISMRa, Boulevard du Maréchal Juin, 14050 Caen CEDEX, France

(Received 10 June 1990; accepted 18 December 1990)

Abstract. Potassium vanadium phosphate, $M_{r}=$ 201.01, orthorhombic, $P n 2_{1} a, a=12 \cdot 7640$ (8), $b=$

[^0]0108-2701/91/061138-04\$03.00
$10 \cdot 5153$ (9), $c=6.3648$ (4) $\AA, V=854 \cdot 3$ (2) $\AA^{3}, Z=$ 8, $D_{x}=3.13 \mathrm{Mg} \mathrm{m}^{-3}, \lambda / D(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71073 \AA, \mu$ $=2.94 \mathrm{~mm}^{-1}, F(000)=776, T=294 \mathrm{~K}, R=0.028$, $w R=0.033$ for 1321 independent reflections with $I>$
$3 \sigma(I)$. The title compound is isostructural with KTiPO_{5} described by Masse [Thesis (1974), Univ. of Grenoble, France]. Its mixed framework is built up from corner-sharing VO_{6} octahedra and PO_{4} tetrahedra delimiting tunnels where potassium cations are located. A new description of the structure is proposed. The host lattice VPO_{5} is built from infinite chains of octahedra $\left[\mathrm{VO}_{3}\right]_{\infty}$, belonging to the hexagonal tungsten bronze structure, running along [011] and [$01 \overline{1}]$. Connection between the octahedral chains is ensured by single PO_{4} tetrahedra.

Introduction. The association of $M \mathrm{O}_{6}$ octahedra of transition elements with PO_{4} tetrahedra allows a great number of tunnel structures to be built, whose host lattices are often closely related to those of pure octahedral structures. This is true for instance in the cases of the tungsten and niobium phosphate bronzes (Borel, Goreaud, Grandin, Labbe, Leclaire \& Raveau, 1991), which are derived from perovskite, tetragonal tungsten bronzes and hexagonal tungsten bronzes (Magneli, 1949, 1953). In this respect, vanadium seems to exhibit a different behaviour. Although the two vanadium phosphates $\mathrm{K}_{2} \mathrm{~V}_{3} \mathrm{P}_{4} \mathrm{O}_{17}$ (Leclaire, Chahboun, Groult \& Raveau, 1988) and $\mathrm{Cs}_{2} \mathrm{~V}_{3} \mathrm{P}_{4} \mathrm{O}_{17}$ (Lii \& Wang, 1989) possess a tunnel structure, they do not show close relationships with pure octahedral oxides. During investigation of the system K-V-P-O, a new vanadium(IV) phosphate, KVPO_{5}, was isolated, which we found to be isostructural with the phosphate KTiPO_{5} described by Masse (1974). The present paper deals with the structure of this phase and with the study of its relationships with the hexagonal tungsten bronze (HTB).

Experimental. Dark blue crystals of KVPO_{5} crystallized as a minor product in a mixture of composition ' $\mathrm{K}_{7} \mathrm{~V}_{8} \mathrm{P}_{9} \mathrm{O}_{44}$ ' in the following way: firstly a mixture of $\mathrm{H}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PO}_{4}, \mathrm{~V}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in appropriate ratios was heated in a platinum crucible for 2 h at 653 K to decompose the phosphate and carbonate; secondly the appropriate amount of vanadium was added. The product was grown and heated in an evacuated silica ampoule for 7 d at 923 K . Crystal 0.084 $\times 0.072 \times 0.048 \mathrm{~mm}$. Enraf-Nonius CAD-4 diffractometer. Unit cell: least squares on 25 reflections, $\pm 2 \theta, 18<2 \theta<22^{\circ}$. Intensity measurement by $\omega-\theta$ of $(1+0.35 \tan \theta)^{\circ}$ scan, and $(1+\tan \theta) \mathrm{mm}$ counter aperture slit determined by a study of some reflections in the $\omega-\theta$ plane. Scanning speed adjusted to obtain $\sigma(I) / I<0.018$ or to approach it in a time limited to 60 s . Three standards for count every 3000 s ; no appreciable trends. $0 \leq \theta \leq 45^{\circ} ; 0 \leq h \leq$ $15,0 \leq k \leq 20,-12 \leq l \leq 0$. 3181 reflections measured, 1321 with $I / \sigma(I) \geq 3$ used to solve and refine the structure. No correction made for extinction or absorption. Structure solved by heavy-atom

Table 1. Positional parameters with e.s.d.'s in parentheses

	x	y	z	$B\left(\AA^{2}\right)$
	x	0.250	$-0.0038(1)$	$0.326(8)$
$\mathrm{V}(1)$	$0.12417(5)$	$0.25079(9)$	$0.2750(1)$	$0.328(8)$
$\mathrm{V}(2)$	$0.24842(7)$	$0.49719(1)$		
$\mathrm{P}(1)$	$0.18046(9)$	$0.2337(1)$	$0.4976(2)$	$0.38(1)$
$\mathrm{P}(2)$	$-0.0028(1)$	$0.4879(1)$	$0.1681(2)$	$0.33(1)$
$\mathrm{K}(1)$	$0.3806(1)$	$0.4332(1)$	$0.7812(2)$	$1.54(2)$
$\mathrm{K}(2)$	$0.3971(1)$	$0.1794(2)$	$0.2057(2)$	$1.46(2)$
$\mathrm{O}(1)$	$0.1119(3)$	$0.2051(3)$	$0.3054(5)$	$0.62(5)$
$\mathrm{O}(2)$	$0.1104(3)$	$0.2622(4)$	$-0.3134(5)$	$0.70(5)$
$\mathrm{O}(3)$	$0.0092(3)$	$0.3683(3)$	$0.0278(6)$	$0.59(6)$
$\mathrm{O}(4)$	$0.0182(3)$	$0.1021(4)$	$-0.0232(6)$	$0.76(6)$
$\mathrm{O}(5)$	$0.2272(3)$	$0.1032(4)$	$-0.0395(6)$	$0.63(6)$
$\mathrm{O}(6)$	$0.2202(3)$	$0.3538(4)$	$0.0334(6)$	$0.73(6)$
$\mathrm{O}(7)$	$0.3991(3)$	$0.4666(3)$	$0.1950(5)$	$0.53(5)$
$\mathrm{O}(8)$	$0.2474(3)$	$0.6177(3)$	$0.0373(5)$	$0.59(5)$
$\mathrm{O}(9)$	$0.0931(3)$	$0.5047(4)$	$0.3109(5)$	$0.62(5)$
$\mathrm{O}(10)$	$0.2557(3)$	$0.3449(3)$	$0.4521(6)$	$0.68(5)$

Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4 / 3)\left[a^{2} B(1,1)\right.$ $+b^{2} B(2,2)+c^{2} B(3,3)+a b(\cos \gamma) B(1,2)+a c(\cos \beta) B(1,3)+$ $b c(\cos \alpha) B(2,3)]$.
methods. Refinement on F. All subsequent calculations on a MicroVAXII with the SDP system (B. A. Frentz \& Associates, Inc., 1982); all atoms refined anisotropically. Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV), $(\Delta / \sigma)_{\max }=0.005, \quad \Delta \rho<0.7 \mathrm{e} \AA^{-3}, \quad R=0.028$, $w R=0.033, w=f(\sin \theta / \lambda)$. Atomic parameters in Table 1,* bond distances and angles in Table 2.

Discussion. The ' VPO_{5} ' framework is built up from corner-sharing VO_{6} octahedra and PO_{4} tetrahedra (Figs. 1 and 2). One observes $\left[\mathrm{VPO}_{8}\right]_{\infty}$ chains where one octahedron alternates with one tetrahedron. Half of these chains run along a and half of them run along \mathbf{c}. Two chains running along \mathbf{c} are linked via a chain running along a and vice versa.

Each PO_{4} shares its corners with four VO_{6} octahedra whereas each VO_{6} octahedron shares its corners with four PO_{4} tetrahedra and two VO_{6} octahedra.

This framework delimits two sorts of six-sided tunnels running along a and \mathbf{c}, respectively. The first type of tunnel (Fig. 1) is formed of rings of four VO_{6} octahedra sharing their corners with two PO_{4} tetrahedra, whereas the second type of tunnel (Fig. 2), which exhibits rings of three VO_{6} octahedra sharing their corners with three PO_{4} tetrahedra, is very similar to those observed in the hexagonal tungsten bronze structure (HTB) described by Magneli (1953). In fact the projection of the structure onto (100) (Fig. 1) shows the existence of infinite $\left[\mathrm{VO}_{3}\right]_{\infty}$ chains

[^1]Table 2. Distances (\AA) and angles $\left({ }^{\circ}\right)$ in the VO_{6} and PO_{4} polyhedra and main $K-O$ distances
The $\mathrm{V}-\mathrm{O}(i)$ or $\mathrm{P}-\mathrm{O}(i)$ distances are on the diagonal, above it are the $\mathrm{O}(i)-\mathrm{O}(j)$ distances, and under it are the $\mathrm{O}(i)-\mathrm{V}-\mathrm{O}(j)$ angles.

$\mathrm{V}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(2)$	$\mathrm{O}(3)$	$\mathrm{O}(4)$	$\mathrm{O}(5)$	$\mathrm{O}(6)$
$\mathrm{O}(1)$	$2.030(4)$	$3.984(5)$	$2.7901(6)$	$2.642(6)$	$2.852(6)$	$2.712(6)$
$\mathrm{O}(2)$	$166.39(2)$	$1.982(4)$	$2.762(6)$	$2.763(6)$	$2.838(6)$	$2.786(6)$
$\mathrm{O}(3)$	$89.43(2)$	$89.69(2)$	$1.934(4)$	$2.821(5)$	$3.962(7)$	$2.697(7)$
$\mathrm{O}(4)$	$80.33(2)$	$86.08(2)$	$89.64(2)$	$2.065(4)$	$2.670(7)$	$3.713(7)$
$\mathrm{O}(5)$	$88.96(2)$	$89.73(2)$	$170.76(2)$	$81.12(2)$	$2.040(4)$	$2.678(6)$
$\mathrm{O}(6)$	$94.12(2)$	$99.47(2)$	$97.02(2)$	$171.32(2)$	$92.17(2)$	$1.658(4)$

V(2)	O(51)	O(6)	$\mathrm{O}(7)$	$\mathrm{O}(8)$	$\mathrm{O}(9)$	$\mathrm{O}(10)$
$\mathrm{O}\left(5^{\text {i }}\right.$)	1.653 (4)	3.836 (6)	2.741 (6)	2.717 (6)	2.691 (6)	2.725 (6)
$\mathrm{O}(6)$	178.27 (2)	$2 \cdot 183$ (5)	2.771 (6)	2.797 (6)	2.875 (6)	2.705 (7)
$\mathrm{O}(7)$	96.21 (2)	82.50 (2)	2.015 (4)	2.698 (6)	3.995 (5)	2.769 (6)
$\mathrm{O}(8)$	96.65 (2)	84.40 (2)	85.13 (2)	1.973 (4)	$2 \cdot 885$ (6)	$3 \cdot 900$ (5)
$\mathrm{O}(9)$	94.50 (2)	86.80 (2)	$169 \cdot 28$ (2)	$93 \cdot 20$ (2)	1.997 (4)	$2 \cdot 817$ (7)
$\mathrm{O}(10)$	97.52 (2)	$81 \cdot 31$ (2)	88.28 (2)	164.94 (2)	90.76 (2)	1.960 (4)

$\mathrm{P}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(2)$	$\mathrm{O}\left(8^{\text {i }}\right.$)	O(10)
O(1)	1.534 (4)	$2 \cdot 500$ (5)	2.500 (6)	2.530 (6)
$\mathrm{O}(2)$	109.42 (2)	1.528 (4)	2.550 (6)	2.534 (6)
$\mathrm{O}\left(8^{\text {ii }}\right.$)	108.39 (2)	111.96 (2)	1.548 (4)	2.450 (5)
$\mathrm{O}(10)$	110.74 (2)	111.29 (2)	104.94 (2)	1.541 (4)
$\mathrm{P}(2)$	$\mathrm{O}(3)$	$\mathrm{O}\left(4^{\text {iii) }}\right.$)	$\mathrm{O}\left(7^{\text {iv }}\right.$)	$\mathrm{O}(9)$
O(3)	1.550 (4)	2.483 (5)	2.482 (6)	2.540 (6)
$\mathrm{O}\left(4^{\text {iii) }}\right.$)	$107 \cdot 60$ (2)	1.526 (5)	2.522 (6)	2.534 (6)
O (7iv)	106.75 (2)	110.57 (3)	1.541 (4)	2.509 (5)
O(9)	110.82 (3)	111.73 (3)	$109 \cdot 26$ (2)	1.534 (4)

$\mathrm{K}(1)-\mathrm{O}\left(1^{\text {i }}\right.$)	2.865 (4)	$\mathrm{K}(2)-\mathrm{O}\left(3^{v}\right)$	2.798 (5)
$\mathrm{K}(1)-\mathrm{O}\left(3^{\text {n }}\right.$)	$2 \cdot 651$ (5)	$\mathrm{K}(2)-\mathrm{O}\left(4^{\text {V }}\right.$)	2.670 (5)
$\mathrm{K}(1)-\mathrm{O}\left(4^{\text {i }}\right.$)	$2 \cdot 928$ (5)	$\mathrm{K}(2)-\mathrm{O}(5)$	2.790 (5)
$\mathrm{K}(1)-\mathrm{O}\left(5^{\text {i }}\right.$)	$3 \cdot 042$ (5)	$\mathrm{K}(2)-\mathrm{O}(6)$	3.109 (5)
$\mathrm{K}(1)-\mathrm{O}(6)$	2.732 (5)	$\mathrm{K}(2)-\mathrm{O}(7)$	3.021 (4)
$\mathrm{K}(1)-\mathrm{O}(7)$	$2 \cdot 668$ (4)	$\mathrm{K}(2)-\mathrm{O}\left(8^{\text {ii) }}\right.$)	2.877 (5)
K(1)-O(8)	3.052 (5)	$\mathrm{K}(2)-\mathrm{O}\left(9^{\text {n }}\right.$)	3.115 (4)
$\mathrm{K}(1)-\mathrm{O}(10)$	2.791 (5)	$\mathrm{K}(2)-\mathrm{O}(10)$	2.958 (5)

$\mathrm{K}(2)-\mathrm{O}(1) \quad 2.755$ (5)
Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}+z$; (ii) $\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}+z$; (iii) $\frac{1}{2}-x, \frac{1}{2}+y,-z$; (iv) $-\frac{1}{2}+x, y, \frac{1}{2}-z$; (v) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (vi) $\frac{1}{2}-x,-\frac{1}{2}+y,-\frac{1}{2}+z$.
of corner-sharing octahedra running along the [011] and [$01 \overline{1}]$ directions. The great similarity of this structure with HTB's is better seen by considering one layer of polyhedra parallel to (011) (Fig. 2). Such a layer is indeed built up from HTB- $\left[\mathrm{VO}_{3}\right]_{\infty}$ chains running along [01T] linked via single PO_{4} tetrahedra and via $\left[\mathrm{VPO}_{8}\right]_{\infty}$ chains. The VO_{6} octahedra of the VPO_{8} chains in fact belong to HTB- $\left[\mathrm{VO}_{3}\right]_{\infty}$ chains, which run along the [0111 direction in a layer of polyhedra parallel to $(01 \overline{1})$; the geometry of the latter is absolutely identical to that of the (011) layer. Moreover, two successive $\left[\mathrm{VO}_{3}\right]_{\infty}$ chains are linked via single PO_{4} tetrahedra in the direction orthogonal to the (011) or ($01 \overline{1}$) plane. Thus the $\left[\mathrm{VPO}_{s}\right]_{\infty}$ framework can be described as the assemblage of infinite $\left[\mathrm{VO}_{3}\right]_{\infty}$ HTB chains linked via single PO_{4} tetrahedra. Along c , two successive chains are parallel, i.e. both parallel to [011] or to [011] (Fig. 1),
whereas along a the successive $\left[\mathrm{VO}_{3}\right]_{\infty}$ chains are parallel to [01T] alternately.

The PO_{4} tetrahedra have the classical geometry observed for monophosphates, with four almost equal distances (Table 2). The VO_{6} octahedra are characterized by one abnormally short $\mathrm{V}-\mathrm{O}$ bond ($1.65 \AA$), four intermediate $\mathrm{V}-\mathrm{O}$ bonds (1.93 to $2.06 \AA$) which correspond generally to the oxygens linked to phosphorus, and one longer $\mathrm{V}-\mathrm{O}$ bond $(2.04-2 \cdot 18 \AA)$. It is worth pointing out that in the $\left[\mathrm{VO}_{3}\right]_{\infty}$ HTB chains, the short $\mathrm{V}-\mathrm{O}$ bond alternates

Fig. 1. Projection of the structure along a.

Fig. 2. The (011) layer built up of HTB- $\left[\mathrm{VO}_{3}\right]_{\infty}$ chains and $\left[\mathrm{VPO}_{8}\right]_{\infty}$ chains linked one to the other by PO_{4} tetrahedra.
with a long one as in $\mathrm{K}_{2} \mathrm{~V}_{3} \mathrm{P}_{4} \mathrm{O}_{17}$ (Leclaire et al., 1988). Moreover it must also be emphasized that the apex corresponding to the shortest $\mathrm{V}-\mathrm{O}$ bond is not free, contrary to the Mo^{\vee} phosphates, which are always described as molybdenyl compounds.

The d^{1} configuration of V^{IV} suggests the possibility of particular electron transport properties due to the one-dimensional character of $\left[\mathrm{VO}_{3}\right]_{\infty}$ chains. In the same way, the existence of intersecting tunnels indicates possible mobility of the K^{+}cations, leading to ion exchange properties and ionic conductivity.

References

B. A. Frenz \& Associates, Inc. (1982). SDP Structure Determination Package. College Station, Texas, USA.
Borel, M. M., Goreaud, M., Grandin, A., Labbe, Ph., Leclaire, A. \& Raveau, B. (1991). Eur. J. Solid State Inorg. Chem. 28, 93-129.
Leclaire, A., Chahboun, A., Groult, D. \& Raveau, B. (1988). J. Solid State Chem. 77, 170-179.

Lit, K. H. \& Wang, Y. P. (1989). J. Solid State Chem. 80, 127-132.
Magneli, A. (1949). Arkiv. Chem. 1, 213-269.
Magneli, A. (1953). Acta Chem. Scand. 7, 315-319.
MASSE, R. (1974). Thesis, Univ. of Grenoble, France.

Structure of $\mathbf{S b}_{\mathbf{2}} \mathbf{T e}$

By V. Agafonov and N. Rodier
Laboratoire de Chimie Minérale et de Cristallographie, Faculté de Pharmacie, 5 rue J.-B. Clément, 92296 Châtenay-Malabry CEDEX, France
R. Céolin
Laboratoire de Chimie Physique, Faculté de Pharmacie, 2 bis Boulevard Tonnelé, 37042 Tours CEDEX, France
R. Bellissent
Laboratoire Léon Brillouin, CEA-CNRS, CEN-Saclay, 91191 Gif sur Yvette CEDEX, France
C. Bergman
CTM du CNRS, 26 avenue du $141^{\text {eme }}$ RIA, 13003 Marseille, France
and J. P. Gaspard
Institut de Physique, Université de Liège, B-4000 Sart Tilman, Belgique

(Received 1 August 1990; accepted 26 November 1990)

Abstract

Diantimony-tellurium, $\mathrm{Sb}_{2} \mathrm{Te}, M_{r}=371 \cdot 1$, trigonal, $P \overline{3} m 1, a=4.272$ (1), $c=17.633$ (3) $\AA, V=$ 278.6 (2) $\AA^{3}, Z=3, D_{x}=6.63 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\operatorname{Mo~K} \bar{\alpha})=$ $0.7107 \AA, \quad \mu=22.11 \mathrm{~mm}^{-1}, \quad F(000)=462, \quad T=$ 294 K , final $R=0.035$ for 245 independent observed reflections. The structure of $\mathrm{Sb}_{2} \mathrm{Te}$ consists of nine layers stacked along the c axis and presents the combination of five-layer stacks of $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ and twolayer stacks of Sb_{2}.

Introduction. The layered compounds of the $\mathrm{Sb}-\mathrm{Te}$ system, such as $\mathrm{Sb}_{2} \mathrm{Te}_{3}, \mathrm{SbTe}$ and $\mathrm{Sb}_{2} \mathrm{Te}$, are important for industrial applications owing to the strong anisotropy in their electronic properties. These compounds, as well as the phases of the $\mathrm{Bi}-\mathrm{Te}$ and $\mathrm{Bi}-\mathrm{Se}$ systems, have trigonal or rhombohedral symmetries

with a similar a parameter while the c parameter depends on the number of layers, which is itself connected to the chemical composition (Imamov \& Semiletov, 1971). The crystal structures of $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ (Semiletov, 1956; Anderson \& Krause, 1974) and SbTe (Stasova \& Karpinskii, 1967) are already known. In this paper, the results of the $\mathrm{Sb}_{2} \mathrm{Te}$ crystal structure determination are reported.

Experimental. Single crystals of $\mathrm{Sb}_{2} \mathrm{Te}$ were obtained by slow cooling a molten stoichiometric (2:1) mixture of Sb and Te . A platelet-like crystal $(0.38 \times 0.07 \times$ 0.02 mm) with well defined faces was chosen. EnrafNonius CAD-4 diffractometer; lattice parameters determined from 25 reflections having $8.87^{\circ} \leq \theta \leq$ $19 \cdot 87^{\circ}, \theta-2 \theta$ scan technique; $0.049 \leq(\sin \theta) / \lambda \leq$

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53849 (10 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

